The geodesic 2-center problem in a simple polygon
نویسندگان
چکیده
منابع مشابه
The Geodesic 2-center Problem in a Simple Polygon
The geodesic k-center problem in a simple polygon with n vertices consists in the following. Find a set S of k points in the polygon that minimizes the maximum geodesic distance from any point of the polygon to its closest point in S. In this paper, we focus on the case where k = 2 and present an exact algorithm that returns a geodesic 2-center in O(n log n) time.
متن کاملComputing the Geodesic Center of a Simple Polygon
The geodesic center of a simple polygon is a point inside the polygon which minimizes the maximum internal distance to any point in the polygon. We present an algorithm which calculates the geodesic center of a simple polygon with n vertices in time O(n log n).
متن کاملConstrained Geodesic Centers of a Simple Polygon
For any two points in a simple polygon P , the geodesic distance between them is the length of the shortest path contained in P that connects them. A geodesic center of a set S of sites (points) with respect to P is a point in P that minimizes the geodesic distance to its farthest site. In many realistic facility location problems, however, the facilities are constrained to lie in feasible regi...
متن کاملComputing the L 1 Geodesic Diameter and Center of a Simple Polygon in Linear Time
In this paper, we show that the L1 geodesic diameter and center of a simple polygon can be computed in linear time. For the purpose, we focus on revealing basic geometric properties of the L1 geodesic balls, that is, the metric balls with respect to the L1 geodesic distance. More specifically, in this paper we show that any family of L1 geodesic balls in any simple polygon has Helly number two,...
متن کاملA Linear-Time Algorithm for the Geodesic Center of a Simple Polygon
Let P be a closed simple polygon with n vertices. For any two points in P , the geodesic distance between them is the length of the shortest path that connects them among all paths contained in P . The geodesic center of P is the unique point in P that minimizes the largest geodesic distance to all other points of P . In 1989, Pollack, Sharir and Rote [Disc. & Comput. Geom. 89] showed an O(n lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Geometry
سال: 2018
ISSN: 0925-7721
DOI: 10.1016/j.comgeo.2018.02.008